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Abstract

Background: The coronavirus 2019 (COVID-19) pandemic has been spread-
ing globally for months, yet the infection fatality ratio of the disease is still
uncertain. This is partly because of inconsistencies in testing and death
reporting standards across countries. Our purpose is to provide accurate es-
timates which do not rely on testing and death count data directly but only
use population level statistics.
Methods: We collected demographic and death records data from the Ital-
ian Institute of Statistics. We focus on the area in Italy that experienced
the initial outbreak of COVID-19 and estimated a Bayesian model fitting
age-stratified mortality data from 2020 and previous years. We also assessed
the sensitivity of our estimates to alternative assumptions on the proportion
of population infected.
Findings: We estimate an overall infection fatality rate of 1·29% (95% cred-
ible interval [CrI] 0·89− 2·01), as well as large differences by age, with a low
infection fatality rate of 0·05% for under 60 year old (CrI 0 − 0·19) and a
substantially higher 4·25% (CrI 3·01−6·39) for people above 60 years of age.
In our sensitivity analysis, we found that even under extreme assumptions,
our method delivered useful information. For instance, even if only 10% of
the population were infected, the infection fatality rate would not rise above
0·2% for people under 60.
Interpretation: Our empirical estimates based on population level data
show a sharp difference in fatality rates between young and old people and
firmly rule out overall fatality ratios below 0·5% in populations with more
than 30% over 60 years old.
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1. Introduction

Estimating the severity of the coronavirus disease 2019 (COVID-19), caused
by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
across demographic groups is of medical interest, but will also be crucial in
the design of health and economic policies to deal with the next phases of
the pandemic.
Several approaches to measure lethality have been proposed since the start
of the outbreak1,2,3,4, with most of the relevant population infected. Given
the mounting evidence that a substantial proportion of infected people are
either asymptomatic or display very mild symptoms5,6, as well as the diffi-
culties many countries are encountering in ramping up testing, it has been
difficult to obtain precise estimates of the total number of infected. Testing
mainly symptomatic cases on the basis of clinical studies on the symptoms
of COVID-197,8,9,10,11, as announced for instance by the Italian government,
might also have led to underestimating the total number of infected. While
measurement of deaths is reliable, statistically significant deviations in total
deaths relative to previous years have been observed in the most affected
areas, leading to concerns that official COVID-19 death counts might also
be underestimated in some cases12. Together, those hurdles make estimating
the true infection fatality rate challenging.
To sidestep some of those issues, in this article we used an empirical ap-
proach employing publicly available aggregate deaths and demographic data
to obtain infection fatality ratio estimates without relying on official data on
COVID-19 positive cases and deaths. The key observation is that, assuming
an accurate measurement of fatalities in a population, infection fatality ratio
estimates are less strongly dependent on accurate measurement of total cases
when the share of population infected is larger: keeping the number of deaths
fixed, the estimate changes much less when the fraction of the population in-
fected varies from 40% to 60% than when it changes from 2% to 3%, simply
because ratios are nonlinear.
We were therefore able to obtain precise fatality estimates by age range
focusing on one of the hardest hit areas in Lombardy, which was placed
under lock-down order already on February 21st 2020. This area includes
ten towns and has a population of around 50 thousands people. The first
recorded patient infected through community spread in Italy was admitted
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to intensive care on February 20th and the area already had 36 confirmed
cases the day after13. While widespread randomized antibody testing hasn’t
yet been conducted in this area, 30% of a sample of blood donors from all
ten municipalities tested positive to antibody14, and a smaller sample of 60
asymptomatic blood donors in one of the towns under lock-down showed 40
(66%) positive cases15. Although these samples might not be fully represen-
tative of the population of these areas, these figures are highly suggestive of
widespread contagion.

2. Methodology

2.1. Data

We focused on ten Italian municipalities in Lombardy that experienced the
initial outbreak of COVID-19. Data on deaths has been collected from the
Italian Institute of Statistics (ISTAT)16. We built estimates of total death
counts based on daily data on recorded deaths for 2020 and previous years
for the period 2015-2019 that ISTAT collects from the Anagrafe Nazionale
della Popolazione Residente (National Census of Resident Population). The
data contains information about gender and age group (in 5-years bins) for
each recorded death until April 4th 2020. ISTAT has released data for only
seven of the ten municipalities that experienced the initial outbreak. Hence,
we focused our analysis on this subsample. The excluded towns are much
smaller than the others: the total population of those three towns in 2019
was 3,543, while the remaining seven municipalities had a total population
of 47,020.
Death counts data has been complemented with information provided by IS-
TAT on the demographics of each municipality17. For every city we collected
total population by age range in each year from 2015 to 2019. We used year
2019 information for year 2020 since data on 2020 has not been released yet.

2.2. Comparing 2020 deaths to previous years

In order to motivate the use of administrative death counts for our infection
fatality rate estimation, we begin by analysing patterns in overall mortality
in 2020 and previous years. In particular, on every day between February
21st (the beginning of the outbreak) and April 4th the difference between
the number of 2020 deaths and the 2015-2019 average has been computed for
total population and for different age groups. We compared total deaths to
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average number and fluctuations in deaths in past years to assess the signal
to noise ratio of this measure.

2.3. Bayesian Estimation of COVID-19 infection fatality rate

We employ a Bayesian framework to estimate the infection fatality rate of
COVID-19 by adapting a standard binomial mortality model to our setting18.
The likelihood function of the model is obtained by assuming deaths in the
period between February 28th and April 4th of each year are binomially
distributed according to:

Di,a,y ∼ Binomial (δa · θi, Ni,a,y) for y ∈ {2015, ..., 2019} (1)

Di,a,2020 ∼ Binomial
(
δa + δCovid

a · θi, Ni,a,2020

)
(2)

where i denotes the municipality, y the year, and a the age range. We used
seven age ranges: 0 − 20, 21 − 40, 41 − 50, 51 − 60, 61 − 70, 71 − 80, 81+.
Di,a,y and Ni,a,y are the total deaths and population in town i, year y and
age range a, respectively. The baseline lethality rates δa are heterogeneous
across age ranges, but were assumed to be constant across municipalities and
years.
δCovida is the infection fatality rate for age range a and we assumed δCovida,t = 0
in every year before 2020 when COVID-19 was not present. We also assumed
that infection rates θi are heterogeneous across municipalities but constant
across age groups.
We assumed the following priors for the parameters of interest:

δa ∼ Uniform[0, 0·1] (3)

δCovid
a ∼ Uniform[0, 0·3] (4)

θi ∼ Beta(3, 2). (5)

Priors on baseline and COVID-19 death rates were chosen to be uninfor-
mative, while we chose the prior on infection rates to reflect the results of
the antibody testing in one of the municipalities15, while at the same time
maintaining a weakly informative prior.
We implemented a Bayesian procedure to derive point estimates and credible
intervals for the infection fatality rates. The model was estimated using
Markov Chain Monte Carlo (MCMC). We calculated the median and 95%
credible interval using to the quantiles of the posterior distribution for all
parameters. To check the sensitivity of our estimates we also calculated point
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estimates as the mode of the posterior distribution and confidence intervals
as 95% highest posterior density interval19.
We fitted our model using R version 3.6.2. We drew 100,000 samples from
the joint posterior distribution and used 10 independent chains, discarding
the first 1000 samples for each chain. Trace plots of the Markov Chain
Monte Carlo as well as posterior distributions for each variable are reported
in Appendix A. All analyses are fully reproducible with the code available
online.
Because our Bayesian procedures relies on modelling assumptions to derive
the infected portion of the population, we also implemented a more agnostic
approach, showing how infection fatality rates vary by contagion rate. In this
exercise we computed the infection fatality rates from a simplified version of
the model above in which we set a degenerate prior for each of the θi to be
equal to a constant in the interval [0·1, 1] and estimated the model for each
choice.

Role of the Funding Source

The funders had no role in study design, data collection, data analysis, data
interpretation, or writing of the report. All authors had full access to all
data in the study and had final responsibility for the decision to submit for
publication.

3. Results

3.1. Raw Deaths Counts

We documented a substantial increase in total deaths at the beginning of the
outbreak. Figure 1 shows the total daily deaths counts in the seven munici-
palities for 2020 and 2015-2019 (average) in the period between Jan 1st and
April 4th. The year 2020 and previous years are very similar preceding the
last week of February, when the first COVID-19 cases have been discovered.
Starting that week, we observed a spike in the number of deaths. This spike
is clearly related to COVID-19 as it starts at the beginning of the outbreak
and it significantly overcomes average fluctuations in deaths observed in pre-
vious years. In total, deaths over the period from February 21st to April 4th
in 2020 were almost five times the average in previous years over the same
period of time (341 vs 70).
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3.2. Infection Fatality Ratio Estimates

Using our Bayesian model we estimated an overall infection fatality ratio of
1·29% (95% credible interval [CrI] 0·89−2·01). We also uncovered substantial
heterogeneity by age. For under 60 years old the infection fatality rate was
0·05% (CrI 0− 0·19, Table 2), while for over 60 years old it was 4·25% (CrI
3·01− 6·39, Table 2).
Figure 2 shows the estimated infection fatality ratios by age group together
with 95% credible intervals and interquartile range. As expected, infection fa-
tality ratios were found much larger for older age groups. Point estimates are
4·66 and 9·04 for 71-80 and 81+, respectively. We cannot exclude, however,
that the infection fatality ratio for over 80 years old is as high as 13·3% or as
low as 6·61%. Interestingly, we found an infection fatality rate close to zero
for under 50 years old, and around 0·1% for the 51-60 group. For robustness,
we have also recalculated all point estimates using the mode and confidence
intervals as the highest posterior density interval. Results remained virtually
identical (data not shown).
Estimated infections rates were also heterogeneous by town, ranging between
21% and 79·5% (Table 2). Interestingly, Castiglione d’Adda, where antibody
tests conducted on a sample of individuals detected a 66·6% infection rate,
resulted as the municipality with the largest share of the population infected
(79·51%). We estimate a population weighted overall infection rate for the
seven towns of 40·5%, (CrI 25% − 58%). This is broadly consistent with a
recent study on blood donors for the entire area14 has found a 30% overall
infection rate.
We finally performed an exercise to assess how sensitive our infection fatality
rate estimates are to different levels of contagion (Figure 3). Focusing on a
large range of potential infection rates, we found that even in the conservative
assumption that only 15% of the population was infected, under 60 years old
still experienced an infection fatality rate significantly below 1%, with under
40 being around 0·1%. Obviously, estimates spiked for older age groups as
we set the infection rate very low. These results confirm the view that the
infection has low lethality rates for younger individuals, but large rates for the
elders. Moreover, this exercise showed that the overall infection fatality rate
was significantly above zero and around 0·5% even in the most conservative
assumption of 100% contagion.
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4. Discussion

In this paper we estimated the infection fatality rate of COVID-19 from
administrative death counts on seven Italian municipalities that experienced
the first outbreak of this desease in late February 2020. We found an overall
infection fatality rate of 1·29% (CrI 0·89 − 2·01). We uncovered significant
heterogeneity across age groups. Under 60 years old have infection fatality
ratios around 0·05% (CrI 0·00− 0·19). On the contrary, older people are at
significantly larger risk: over-60 infection fatality ratio is 4·25% (CrI 3·01−
6·4), and for over-80 it is estimated at 9·04% (CrI 6·61− 13·30). Finally, we
excluded very low fatality rates even under very conservative assumptions on
the population infection rate: if the entire population had been infected, the
overall infection fatality ratio would still be around 0·5%.
Our result for overall infection fatality ratio is larger than estimates in20

based on travellers’ data. It is, however, remarkably close to estimates for
two case studies where the entire population was tested: Diamond Princess
Cruise (1·3%)21, and Vo’ Euganeo (1%) - a 3,000 inhabitants municipality in
the Italian Veneto region. Despite the similarity there are two main reasons
to expect differences between our estimates and those in the two mentioned
case studies. First, we estimate a large infection fatality ratio for over 80 years
old who are likely underrepresented in the Diamond Princess Cruise. Second,
total population in both Diamond Princess Cruise and Vo’ Euganeo is limited
and for this reason those estimates might be affected by under-sampling of
the number of infected in the tails. These small differences notwithstanding,
all these figures are substantially lower than estimated case fatality rates
(CFRs) computed with official contagion data and that have previously been
estimated for influenza pandemics22. The likely reason is that COVID-19 case
counts are subject to downward biases due to limited testing capacity and
testing strategies that prioritize symptomatic cases despite a large number
of asymptomatic patients.
Our estimates could suffer from the fact that deaths data is missing for the
period after April 4th 2020. This would be an issue if the contagion had not
stopped by that date and therefore useful information on deaths could not be
used in our model. However, as the trend in number of deaths suggests, the
contagion likely stopped by April 4th in these seven municipalities. Indeed,
the number of deaths in the last days of our sample went back to the average
number in the previous five years. For this reason, there are reasons to
believe that data for the following weeks would not be very informative on
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the lethality of the first wave of contagion.
One limitation of our estimates is that they should not be taken at face value
in the analysis of contexts where the hospital system is under stress or close
to capacity. This is because our exercise was performed on a case study
at the beginning of the Italian outbreak when the hospital system was still
fully functioning. Moreover, the quarantine measures implemented in the
seven municipalities on February 21st likely reduced contagion, potentially
affecting infection fatality ratios and making them hard to extrapolate to
context where similar measures were not undertaken.
Another limitation is that our model assumed a constant baseline lethality
rate in absence of COVID-19. This implies that the COVID-19 outbreak
did not change the baseline death rate in the population. Plausibly, the
lockdown policy decreased deaths from, among others, violence and traffic,
while at the same time the outbreak could have increased other fatalities due
to lower availability of healthcare resources for other diseases. Fluctuations
due to these causes are, however, likely to be quantitatively small compared
to the large spike in deaths that we observed in 2020, where total deaths
where almost five times the average in previous years over the same period
of time (341 vs 70). For this reason, confounding factors in baseline deaths
levels should not have substantially affected the signal to noise ratio of our
death data.
In conclusion, our results support the need for isolating policies especially
for the elder part of the population given the extremely high fatality rates
from COVID-19 we estimated.
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List of Tables

Table 1: Total population and deaths by age range

Total Population Total Deaths

Age Range 2015 2016 2017 2018 2019 2015 2016 2017 2018 2019 2020

0-20 8, 046 8, 039 8, 012 8, 035 8, 039 0 0 0 0 0 1
21-40 10, 202 10, 058 9, 851 9, 729 9, 711 0 0 1 0 0 0
41-50 7, 984 7, 832 7, 629 7, 461 7, 225 1 2 0 0 2 2
51-60 6, 922 7, 133 7, 284 7, 484 7, 599 3 2 5 2 5 5
61-70 5, 723 5, 704 5, 707 5, 680 5, 681 4 5 4 7 6 29
71-80 4, 733 4, 760 4, 843 4, 857 4, 903 13 10 18 17 10 107
81+ 3, 412 3, 453 3, 573 3, 669 3, 849 57 35 42 47 56 197

Overall 47, 022 46, 979 46, 899 46, 915 47, 007 78 54 70 73 79 341

This table reports descriptive statistics by age range on total population for 2015-2019, and deaths for 2015-2020. Data
refers to the period from January 1st to April 4th.
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Table 2: Model Estimates

Estimate CrI

Infection Fatality Ratios

δCovid
Overall 1·2855 [0·8878; 2·0110]

δCovid
≤60 0·0524 [0·0041; 0·1887]

δCovid
61+ 4·2509 [3·0132; 6·3937]

δCovid
0−20 0·0490 [0·0048; 0·1775]

δCovid
21−40 0·0176 [0·0008; 0·0952]

δCovid
41−50 0·0476 [0·0020; 0·2007]

δCovid
51−60 0·1076 [0·0096; 0·3138]

δCovid
61−70 1·0280 [0·5876; 1·7380]

δCovid
71−80 4·6620 [3·3220; 6·9930]

δCovid
81+ 9·0400 [6·6180; 13·3000]

Baseline Death Rates

δ0−20 0·0016 [0·0000; 0·0085]

δ21−40 0·0028 [0·0004; 0·0093]

δ41−50 0·0152 [0·0060; 0·0299]

δ51−60 0·0452 [0·0276; 0·0691]

δ61−70 0·0935 [0·0624; 0·1331]

δ71−80 0·2830 [0·2220; 0·3550]

δ81+ 1·3290 [1·1680; 1·5030]

Infection Rates

θCasalpusterlengo 21·03 [12·38; 32·48]

θCastiglione d’Adda 79·51 [54·23; 96·23]

θCodogno 44·52 [29·37; 62·76]

θFombio 57·54 [31·12; 87·30]

θMaleo 69·32 [44·21; 92·53]

θSan Fiorano 43·64 [20·38; 75·97]

θSomaglia 21·86 [9·02; 42·50]

This table reports posterior median estimates from the model described in Section 2.3. For each parameter the last column
reports the 95% credible interval.
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List of Figures

Figure 1: Daily deaths in 2020 and previous years average
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The black solid line reports the total deaths by day in 2020 in the seven municipalities, while the blue

dashed line reports the average fatalities on the same day of the previous five years. The horizontal red

line marks February 20th 2020, when the first patient was admitted to the ICU in this area.
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Figure 2: Estimates of the infection fatality rate by age range
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For each age range a on the horizontal axis, the figure reports information on the posterior distribution

of the COVID-19 infection fatality rate δCovid
a from estimating the model described in Section 2.3. Boxes

represent estimated interquartile ranges, with the central line reporting the median posterior estimate,

vertical lines represent 1·5 times the interquartile range.
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Figure 3: Estimates of infection fatality rate by age and proportion of population infected

0.1
0.2
0.5
1.0

2.0

5.0

10.0

20.0

25 50 75 100
Proportion Infected (%)

In
fe

ct
io

n 
Fa

ta
lit

y 
R

at
e 

(%
)

Age Range
0−20
21−40
41−50
51−60
61−70
71−80
81+
Overall

For each proportion of the population affected between 10% and 80% on the horizontal axis, we estimate

a restricted version of the model described in Section 2.3 in which the infection rate θi is set equal for

each municipality at that value. Solid lines represent the median of each posterior while the surrounding

bands report 95% credible intervals from the 2·5 to the 97·5 percentiles of the posterior distributions. The

Overall estimate is obtained by weighting posteriors by population shares in 2019.
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Appendix A. Markov Chain Monte Carlo Estimation diagnostics

Figure Appendix A.1: Trace and density plots for MCMC posteriors of δCovid for each

age range
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For each of the seven age ranges a, this figure reports diagnostic plots for the MCMC

simulation of the model describe in Section 2.3 for the COVID-19 infection mortality rate

parameter: δCodiv
a . The left panels report trace plots of the last 5000 draws from the

posterior to check convergence. The right panels report the corresponding posterior dis-

tribution estimate (black solid line) together with the prior distribution for that parameter

(red solid line). The % overlap reported in red is the PPO (prior posterior overlap).
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Figure Appendix A.2: Trace and density plots for MCMC posteriors of δ for each age

range
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For each of the seven age ranges a, this figure reports diagnostic plots for the MCMC

simulation of the model describe in Section 2.3 for the baseline mortality rate parameter:

δa. The left panels report trace plots of the last 5000 draws from the posterior to check

convergence. The right panels report the corresponding posterior distribution estimate

(black solid line) together with the prior distribution for that parameter (red solid line).

The % overlap reported in red is the PPO (prior posterior overlap).
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Figure Appendix A.3: Trace and density plots for MCMC posteriors of θi for each

municipality
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For each of the seven municipalities i, this figure reports diagnostic plots for the MCMC

simulation of the model describe in Section 2.3 on the baseline mortality rate parameter:

θi. The left panels report trace plots of the last 5000 draws from the posterior to check

convergence. The right panels report the corresponding posterior distribution estimate

(black solid line) together with the prior distribution for that parameter (red solid line).

The % overlap reported in red is the PPO (prior posterior overlap).

3

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 23, 2020. .https://doi.org/10.1101/2020.04.18.20070912doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.18.20070912
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Methodology
	Data
	Comparing 2020 deaths to previous years
	Bayesian Estimation of COVID-19 infection fatality rate

	Results
	Raw Deaths Counts
	Infection Fatality Ratio Estimates

	Discussion
	Markov Chain Monte Carlo Estimation diagnostics

